Enhanced Direct Linear Discriminant Analysis for Feature Extraction on High Dimensional Data
نویسندگان
چکیده
We present an enhanced direct linear discriminant analysis (EDLDA) solution to effectively and efficiently extract discriminatory features from high dimensional data. The EDLDA integrates two types of class-wise weighting terms in estimating the average within-class and between-class scatter matrices in order to relate the resulting Fisher criterion more closely to the minimization of classification error. Furthermore, the extracted discriminant features are weighted by mutual information between features and class labels. Experimental results on four biometric datasets demonstrate the promising performance of the proposed method.
منابع مشابه
Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملFeature reduction of hyperspectral images: Discriminant analysis and the first principal component
When the number of training samples is limited, feature reduction plays an important role in classification of hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed method, called DA-PC1, copes with the small sample size problem and has...
متن کاملA Mixed Two-dimensional Linear Discriminate Method
Feature extraction is one of key technologies of the palmprint identification. In the light of the characteristics subspace palmprint identification technology, the two-dimensional principal component analysis, two-dimensional fisher linear discriminant and two-way two-dimensional principal component analysis algorithm is deeply analyzed. Based on two-dimensional subspace palmprint identificati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005